

Minimum statistical knowledge required for clinical trials on cancer ~Key points for interpreting the results of phase III randomized controlled trials~

Part 1 of 2

Ryunosuke Machida JCOG(*) Data Center

The 23rd JCOG Clinical Trial Seminar 10/10/2020

* Japan Clinical Oncology Group (https://jcog.jp/en/)

Secondary use of any contents of this site for commercial purposes is prohibited.

ICRweb: https://www.icrweb.jp/icr_index.php?lang=en

🥺 National Cancer Center Japan

Atagi et al. (2012) Lancet Oncology 13(7): 671-8.

Secondary use of any contents of this site for commercial purposes is prohibited.

ICRweb: https://www.icrweb.jp/icr_index.php?lang=en

Outline ~What to know for interpreting a randomized trial~

- Interpretation of results of a survival curve
 - Annual survival rate, median survival time
- Why is randomization necessary?
 - Confounding and randomization
- Result verification method
 - Concept of hypothesis testing and meaning of p-value
 - Comprehension of α error, $~\beta$ error, and statistical power
- Views on magnitude of treatment effects
 - Meaning of hazard ratio
- What is an analysis set?
 - Intention-to-treat analysis (ITT analysis)

Outline ~What to know for interpreting a randomized trial~

- Interpretation of results of a survival curve
 - Annual survival rate, median survival time
- Why is randomization necessary?
 - Confounding and randomization
- Result verification method
 - Concept of hypothesis testing and meaning of p-value
 - Comprehension of α error, $~\beta$ error, and statistical power
- Views on magnitude of treatment effects
 - Meaning of hazard ratio
- What is an analysis set?
 - Intention-to-treat analysis (ITT analysis)

What is a survival curve?

- Time on horizontal axis, survival rate on vertical axis, and survival rate at each timepoint in population is connected.
- When death occurs, survival rate at that point decreases.

Secondary use of any contents of this site for commercial purposes is prohibited.

Summary values obtained from survival curves

- Median survival time, annual survival rate
 - The median survival time in the RT group was <u>16.9 months</u>, and the twoyear survival rate was <u>35.1%</u>

Atagi et al. (2012) Lancet Oncology 13(7): 671-8.

Secondary use of any contents of this site for commercial purposes is prohibited.

Outline ~What to know for interpreting a randomized trial~

- Interpretation of results of a survival curve
 - Annual survival rate, median survival time
- Why is randomization necessary?
 - Confounding and randomization
- Result verification method
 - Concept of hypothesis testing and meaning of p-value
 - Comprehension of α error, $~\beta$ error, and statistical power
- Views on magnitude of treatment effects
 - Meaning of hazard ratio
- What is an analysis set?
 - Intention-to-treat analysis (ITT analysis)

Secondary use of any contents of this site for commercial purposes is prohibited.

ICRweb: https://www.icrweb.jp/icr_index.php?lang=en

Presentation at an academic conference

Note: hypothetical example

- Patients who met the eligibility criteria XX at their hospital were divided into a CRT group (250 cases) and an RT group (60 cases) and were retrospectively examined.
- The **CRT group** had a better prognosis than the **RT group**.
- **CRT** is recommended for these patients.

Presentation at an academic conference

Note: hypothetical example

- Patients who met the eligibility criteria XX at their hospital were divided into a CRT group (250 cases) and an RT group (60 cases) and were retrospectively examined.
- The **CRT group** had a better prognosis than the **RT group**.
- **CRT** is recommended for these patients.

Question 1: What is the correct interpretation?

Select one of the following.

- ① Overall results are correct (there is a difference between the effect of CRT and RT)
- 2 Age-specific results are correct (there is no difference between the effect of CRT and RT)
- ③ Both overall and age-specific results are correct (there is a difference in the overall effect, but there is no age-specific difference)
- ④ Both overall and age-specific results are incorrect

What we want to compare is CRT and KI

Note: hypothetical example

90 National Cancer Center Japan

• If the conditions of factors that influence prognosis other than treatment methods are not the same, it is not a "comparison"!!

Treatment method	≤74 years		≥75 years	Total
CRT	200 patients (80%)	>>	50 patients	250 patients
RT	20 patients (33.3%)	<<	40 patients	60 patients

CRT has a higher proportion of patients aged "≤<u>74 years</u>" than RT

 Prognosis varies depending on age (patients aged ≤74 years has good prognosis)

Summary on confounding effect

- Phenomenon in which a third factor (age) related to treatment and prognosis causes an apparent association
 - Factors that cause confounding effect (= age) are called <u>confounding</u> <u>factors</u>

Question 1: What is the correct interpretation? (which factor has no confounding?

Select one of the following.

- ① Overall results are correct (there is a difference between the effect of CRT and RT)
 - Incorrect because there is confounding due to age
- 2 Age-specific results are correct (there is no difference between the effects of CRT and RT effects)
 - Correct because the confounding factor (age) is the same between the groups
- ③ Both overall and age-specific results are correct (there is a difference in the overall effect, but there is no age-specific difference)
- ④ Both overall and age-specific results are incorrect

To ensure no confounding effects

- Make background factors related to prognosis consistent across treatment groups
 - Age
 - Stage (progress of cancer)
 - Performance status (general condition)
 - Others (including unknown factors)

Many factors / unknown factors; therefore, not all of them can be considered

Randomly determine the treatment method

Randomization

- Allocate patients to treatment groups based on probability, <u>regardless of</u> <u>physician or patient preference</u>
- Prevention of patient selection bias due to prognosis
 - Prevent cases wherein patients with good health condition are more likely to be assigned to the CRT group

<u>Comparability (internal validity)</u> is guaranteed

 Equivalent population except for treatment method → difference in treatment method if there is difference in effect

JCOG0301 case

- Randomization in order to compare RT and CRT
 - Background factors other than treatment method were equivalent on average between the treatment groups
 - Differences in survival curves can be expected to be due to treatment method differences

Atagi *et al.* (2012) Lancet Oncology 13(7): 671-8.

Secondary use of any contents of this site for commercial purposes is prohibited.