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Several Kinds of Biomarkers

Surrogate endpoints

— A measurement made on a patient before, during and after
treatment to determine whether the treatment is working

Prognostic biomarkers

— Measured before treatment to indicate long-term outcome for
patients untreated or receiving standard treatment

Predictive biomarkers

— Measured before treatment to identify who will benefit from a
particular treatment
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B-14 Results—Relapse-Free Survival
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— Low Risk (RS <18)
— Intermediate Risk (RS 18 - 30)
— High Risk (RS > 31)
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Prognostic and Predictive
Biomarkers in Oncology

e Single gene or protein measurement
— e.g. HERZ2 protein staining 2+ or 3+
— HER2 amplification
— KRAS mutation
e Scalar index or classifier that summarizes
contributions of multiple genes/proteins

— Empirically determined based on genome-
wide correlating gene expression to patient
outcome after treatment
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Prognostic & Predictive Biomarkers

« Many cancer treatments benefit only a minority
of patients to whom they are administered
— Particularly true for molecularly targeted drugs

« Being able to predict which patients are likely to
benefit would

— save patients from unnecessary toxicity, and enhance
their chance of receiving a drug that helps them

— Help control medical costs
— Improve the success rate of clinical drug development
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Prognostic Factors in Oncology

* Most prognostic factors are not used
because they are not therapeutically
relevant

* Most prognostic factor studies do not have
a clear medical objective

— They use a convenience sample of patients
for whom tissue Is available.

— Generally the patients are too heterogeneous
to support therapeutically relevant
conclusions
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Key Features of OncotypeDx
Development

 Identification of important therapeutic decision context

* Prognostic marker development was based on patients
with node negative ER positive breast cancer receiving
tamoxifen as only systemic treatment

— Use of patients in NSABP clinical trials

« Staged development and validation
— Separation of data used for test development from data used for
test validation
* Development of robust assay with rigorous analytical
validation
— 21 gene RTPCR assay for FFPE tissue
— Quality assurance by single reference laboratory operation
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Predictive Biomarkers

* In the past often studied as un-focused
post-hoc subset analyses of RCTs.

— Numerous subsets examined

— Same data used to define subsets for analysis
and for comparing treatments within subsets

— No control of type | error
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K-ras Mutations and Benefit from Cetuximab
in Advanced Colorectal Cancer
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ABSTRACT

HACEGROUND

Treatment with cetuximab, a monoelonal antibody directed against the epidermal
growth factor receptor, improves overall and progression-free survival and preserves
the quality of life in patients with colorectal cancer that has not responded to che-
maotherapy. The mutation status of the K-z gene in the tumor may affect che re-
sponse to cetukimab and have treatment-independent prognostic value,

MITHODS
We analyzed tumor samples, obrained from 394 of 572 parients (68.9%) with colo-
recral cancer who were randomly assigned to receive cetuximab plus best support-
ive care or best supportive care alone, o look for activating mutations in exon 2 of
the K-ras gene. We assessed whether the muration starus of the K-ras gene was as-
sociated wirh survival in the cerximab and supportive-care groups.
HEFULTS
O the tumons evaluated for Koras outations, 42.3% had at least coe mutation in exon 2
of the gene. The effectiveness of cetuximab was significantly associated with Keras
mutation sams (Fe001 and F<0001 for the interction of Keas mutation statas with
overall survival wnd progression-free survival, respectively), In patients with wildtype
Feras tumoes, treatment with cetnximab as compared with supportive care slone sig-
nificantly imiproved overall survial (median, %5 vs, 4.8 months; hazard mtio for desth,
0055, 95% confidenos interval [C1], D41 o 0.74; P<0.001) and progression-fres survival
{median, 3.7 months vs, 1.9 mooths; hazand ratio for progression o death, 0.40; 95%
C1, 030 to 0.54; P<0001). Among patients with mutated Knas tumors, there was ne
significant difference between those who were treared with cerugimab and those whe
received supportive care alone with respect to overall survival (hazard matio, 0.08;
P=EH or progression-ree survival (hazard rasio, 05% P=056), In the group of pa-
tients receiving best supportive care alone, the mutation statws of the Krs gene wis not
significantly associated with overall survival (hazard ratie for death, 1.00; P=057),
CONCLUS|ONS
DParlenrs with a eolorecral rumor bearing mutated K-ras did not benefit from ceruximab,
whereas parients with a ramor bearing wild-type K-ras did henefir from ceruximab. The
muration starus of the K-ras gens had no influence on survival among parients creared
with best supportive care alone. (ClinicalTrials gov number, NCTOOPA0G0.)
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ARTICLE |

Critical Review of Published Microarray Studies for
Cancer Outcome and Guidelines on Statistical
Analysis and Reporting

Alain Cupuy, Richard M. Simen

Background Both the walidity and the rspraducibility of microarray-based clinicsl research hawe bean challenged. Thers
is & mead for critical review of the statistical analysis and reperiing in published microarray studies that
foous on cancer-related clinical sutoomes,

Methods Studies published through 2004 in which microarray-based gere sxpression profiles were analyzed for
their relation to a clinical carcer cutcome were identified through a Medline search followed by hand
soremning of abstracts and full text articles. Studies that were eligible for cur analysis addressed ore or
maore outcomes that were either an event ccourring during followup, such as death or relapss, or & thera-
peutic responss. We recorded descriptive characteristics for all the selectad studies. & critical revisw of
outcome-related statistical analyses was undertaken for the articles published in 2804,

Results Nirety studies were identifizd, and their descriptive characteristics are pressmed. Sicty-eight [76%) wers
published in journsls of impact factor grester than 8. & detsiled sccount of the 42 studizs 479 publiskesd
in 2004 iz reported, Twenty-ore (30900 of them contsined st keast one of the following three basic flaws:
1} in cutcome-rslated gers finding, an unstated, unclear, or inadequate control for multiple testing: 21 in
class discovery, & spurious claim of comelation betwesn clusters and clinical outcome, made after clusber.
ing samples using & selection of oulcome-related diffzrerially exprassed genes; or 3) in supsrvised pre-
diction, a bissed estimation of the prediction sccurscy through an incorrect cross-validation procsdure,

Cenclusions The mest common and serious mistskes and misunderstsndings recorded in published studiss are
described ard illusirated. Based on this analysis, & propossl of guidelines for statistical analysis snd
reporting for clinicsl microsmay studies, presemtad sz s chacklist of “Dovs and Donts,” is provided,

< Natl Carcer Inst 20078914757

DNA microarmay technclgy has found many applications in bic-
‘medical research. In oncelogy, itk beingueed w becrer undersand
the biologi i i is, vo discover new
‘mrgers ind new drugs, and m develop classitiers (predicoors of good
ouEome e poor cuwome) for wikoring indvidmlized rear-
menes (1-4). Microarray-based clinical research is o recent and
acove area, wicth an exponendally growing number of publicadons,
Bath the reproducibiliey and validiny of findings have been chal-
lenged, however (35.6). In our experience, microirray-based clinical
invesdgacions have generated both unrealisde hype and excessve
skeptcism. We reviewed published microarray snadies in which
gene expression cam are analyzed for relciooships with cancer
ourcomes, and we propos: guidelines for statsdcal analysis and
reporuing. based on the most common and serioes problenrs

Medicine, followed by hand screening of abarraces and articles. The
dewailed process of sslecdon i presenred in Supplemenmary Mo 1
{avuilable onling). The incheion criveria were as follows: the work
s an original clinical snady on human cancer padents, published
in English before December 31, 2004 it analyzed gene axpression
dara of more chan 1000 spos; and it presented smisdcal analyses
relating rthe gene sxpression profiling o o clinical curome, T
rypes of oumome were considerad: 1) A relapse or death ccour-
ring during the course of the dismase. 2 A therpeuts resporse.

Affiliadons of awehors: Biomeiric Research Brench, Divisien of Canoer
Traatment and Disgnoss, National Canoer nstilute, National ndtitules of
Hualth, Bethesda, MD AD, FME; Univarsita Paris Y| Denis Dickirol, Paris,
Franca (A Assiston oa Fubliqua-Hépitaux da Paris, Servios da Damabolo gia,
Ha pial ZainkLeuis, Pars, Francs a0

Cofrespondancs v Richard M. Simon, D50, National Canoar InGHE U, S0
Rccbvills Fika, MSC 7434, Bathasda, MD 30852 (a-mail: reimon &nibgovi.
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Publications Reviewed

e Searched Medline
 Hand screening of abstracts & papers
« Original study on human cancer patients

* Published in English before December 31,
2004

« Analyzed gene expression of more than
1000 probes

* Related gene expression to clinical
outcome

12
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* 90 publications identified that met criteria
— Abstracted information for all 90

e Performed detailed review of statistical
analysis for the 42 papers published In
2004

14
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CONTEXT AND CAVEATS

Prior knowledge

The use of microarray technology has generatad great exciternent
for its potential to identify biomarkers for cancer outcomes, but the
reproducibility and wvalidity of findings based on microarray data
have come under widespread challenge.

Study design

Thig iz a systematic review of micrearray studies in which gene
expression data were analyzed for relationships with cancer
oUtCOMmes.

Contribution

Common methodologic errors committad in statistical analysis of
the relationship of gene expression data to cancer outcomes were
identified and explained. A set of useable guidelines for statistical
analysis and reporting of clinical microarray studies were creatad
for the cancer research community.

Implications

The new guidelines could serve as an accessible and common
basis for discussion among all cancer researchers invalved in
microarray investigations.

Limitations
Technical proceduras for generating reproducible gene expression
rata ara not addrassad hara.

Exclusion criteria were as [ollows: 1) the study focused the
outcome-relased analysis on one or a few individual genes rather
than on a gene expression signature and 2) the seudy on therapeutic
response deale exclusively with belore—afer comparisons of gene
expression profiles.

The bibliographic selection processyielded 90 papers. Descriptive
characeeristics of these papers were recorded: the journal, with
ies 2004 impact faceor; the wyear of publicarion; the tpe of
cancer studied; the number of patients with outcome information;
the type of clinical outcome considered; and the wpe of analysis

Table 1. Descriptive characteristics of the 90 reviewed studies

Study characteristic

No. of studies, n (%]

Type of cancer studied
Hematologic malignancies
Lung and pleura
Braast
Hepatodigestive system
Ganitourinary®
Ganital (famals)
Head and nack
Erain
Malanoma
Other
Mo. of patients with cutcome information
=15
15-24
25-44
50-99
=100
Typa of clinical outcome addressedt
Follow-up data
Type of evant
Diaath
Ralapsa
Both
Rezponse to treatment
Type of treatmant
Chamotharapy
Radiotherapy
Bivlogical tharapiss
Type of analysis
Dutcorme-ralatad gana finding
Class discovary
Supanised prediction
Dutcorme-ralatad gana finding only
Class discovary or supervised pradiction
Journal impact factor (2004)%

24 (27)

12013

12013)
910
819
B (7]
58]
4i4)
242)
219

11013)
26 (29)
22 (24)
26 (29)
518

B3 (77)

3438
25(27)
101011)
26 (29)

15017)
5 (8]
B{7)

48 (53]
60 (87)
57 (63)
518
25 (8d)

748
15018)
35(39)
3337
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 Good microarray studies have clear
objectives, but not generally gene specific
mechanistic hypotheses

« Case selection and analysis methods
should be tailored to study objectives

16
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Good Microarray Studies Have
Clear Objectives

e Class Comparison (Gene Finding)

— Find genes whose expression differs among
predetermined classes, e.g. tissue or experimental
condition

e Class Prediction

— Prediction of predetermined class (e.g. treatment
outcome) using information from gene expression
profile

e Class Discovery

— Discover clusters of specimens having similar
expression profiles

17
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Class Comparison and Class
Prediction

e Not clustering problems

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Don’t control multiplicity or for distinguishing
data used for classifier development from
data used for classifier evaluation

o Supervised methods

18
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Major Flaws Found in 40 Studies
Published in 2004

Inadequate control of multiple
comparisons in gene finding

— 9/23 studies had unclear or inadequate
methods to deal with false positives

* 10,000 genes x .05 significance level = 500 false
positives

19
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Do’s & Don’ts of Gene Finding

Don’t use only fold-changes between
groups to select genes

Don’t use a .05 significance threshold to
select the differentially expressed genes

— .05*10,000=500 false positives per 10,000 genes tested

Do use a method to control the number of
false positive differentially expressed
genes or the false discovery rate

20
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Analysis Strategies for Gene
Finding
« Compare classes on a gene by gene basis

using statistical tests

— Control for the large number of tests
performed

— e.g. use 0.0001 threshold of significance

21
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Analysis Strategies for Gene
Finding

o Select the most differentially expressed
genes in a manner that limits the false
discovery rate to a specified level (e.qg.
10%)

22
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Methods for Controlling the False
Discovery Rate

Benjamini-Hochberg
SAM (Tocher et al.)

Multivariate permutation test (Korn et al.)

24
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Components of Class Prediction

e Gene selection
— Which genes will be included in the model

 Model type selection

— e.g. Diagonal linear discriminant analysis,
Nearest-Neighbor, ...

 Fitting parameters for model
— Weights (regression coefficients)
— Cut-points
— Tuning parameters

25
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Myth

 Complex classification algorithms such as
neural networks perform better than
simpler methods for class prediction.

26
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o Comparative studies indicate that

— Standard statistical model development
methods often over-fit the data and result in
poor predictions

— Complex “artificial intelligence” methods are
often improperly evaluated and perform no
better than simpler methods on realistic
problems

— Predictive classifiers designed to avoid over-
fitting generally perform as well or better than
other methods

27
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* Predictive classifiers designed to avoid
over-fitting generally perform as well or

better than other methods

 Gene selection based on univariate correlation
with outcome

* Model type linear or nearest neighbor classifiers

28
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Linear Classifiers for Two
Classes

1) = 3w

icF
X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for i'th feature

decision boundary I(x) > or <d

29
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Linear Classifiers for Two Classes

Fisher linear discriminant analysis

e Diagonal linear discriminant analysis (DLDA)
assumes features are uncorrelated

« Compound covariate predictor (Radmacher)
e Golub’s weighted voting method

e Support vector machines with inner product
kernel

30
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Advantages of Simple Linear
Classifiers

Do not over-fit data

— Incorporate influence of multiple variables
without attempting to select the best small
subset of variables

— Do not attempt to model the multivariate
Interactions among the predictors and
outcome

31
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Nearest Neighbor Classifiers

Nearest neighbor classification
Nearest k-neighbors

Nearest centroid classification
Shrunken centroid classification
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Validating a Classifier

 Fit of a model to the same data used to
develop it is no evidence of prediction
accuracy for independent data

— Goodness of fit vs prediction accuracy

 Demonstrating statistical significance of
prognostic factors is not the same as
demonstrating predictive accuracy
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Validating a Classifier

* A set of genes is not a classifier

o Testing whether analysis of independent data results in
selection of the same set of genes is not an appropriate
test of predictive accuracy of a classifier
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Based Predictors for Breast Cancer
Cheng Fan, MLS,, Danlel 5. Oh, Ph.D., Lodewyk Wessels, Fh.D.,

Britta Weigelt, Ph.D., Dimitry 540 Muyten, M.E, Androw B, Nebel, PhD
Lawra | van't Veer, Ph.0,, and Charles M. Perou, Ph.D,

ABSTRACT

RACKGROUND

Gene-expression—profiling studies of primary breast rumors performed by differ-
ent liboratories have resulted in the identification of a mumber of distinct prognos:
tic profiles, or geie sets, with little overlap in terms of gene identity,

METHODE

Tocompare the predictions derived from these gene sets for individual samples, we
obtained a sngle data set of 295 samples and applied five gene-expression-hbased
models: intrinsic subtypes, Tkgene profile, wound response, recurrence score, and
the two-gene ratio (for patients who had been treated with tamoxifen),

REEULTS

We found thur most models had high mres of concordance in their outcome predic-
tions for the individual samples, In particular, almest all romers identified as hav-
ing an intrinsic subtype of basal-like, HER2-positive and estrogen-receptor-nega-
tive, or lumin:l B (gssociated with 2 poor prognosis) were also elassified as having
i poor Thgene profile, activited wound response, and high recorrence score. The
F-gerie and recurrence-score mesdels, which are beginning to be used in the clini-
cal setring, showed 77 to 51 peresnt agreement in outcome classification.

CONCLUSIGNS

Even though different gene sets were used for prognostication in patients with
breast cancer, foor of the frve tested showed significant agreement in the ourcome
predicrions for individual patienes and are probably tracking a common see of bio-
logic phenotypes.
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Major Flaws Found in 40 Studies
Published in 2004

Misleading report of prediction
accuracy

— 12/28 reports based on incomplete cross-
validation
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Types of Validation for Prognostic
and Predictive Biomarkers

« Analytical validation
— Pre-analytical and post-analytical robustness

e Clinical validation

— Does the biomarker predict what it’s
supposed to predict for independent data

e Clinical utility

— Does use of the biomarker result in patient
benefit

38
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Split-Sample Evaluation

e Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds

e Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted

39
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Split-Sample Evaluation

« Used for Rosenwald et al. study of
prognosis in DLBL lymphoma.

— 200 cases training-set
— 100 cases test-set
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L eave-one-out Cross Validation

» Leave-one-out cross-validation simulates
the process of separately developing a
model on one set of data and predicting
for a test set of data not used In
developing the model
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Leave-one-out Cross Validation

e Omit sample 1
— Develop multivariate classifier from scratch on

training set with sample 1 omitted

— Predict class for sample 1 and record whether

prediction Is correct
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Leave-one-out Cross Validation

* Repeat analysis for training sets with each
single sample omitted one at a time

* e = number of misclassifications
determined by cross-validation

e Subdivide e for estimation of sensitivity
and specificity
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» Cross validation is only valid if the test set is not
used in any way in the development of the
model. Using the complete set of samples to
select genes violates this assumption and
Invalidates cross-validation.

« With proper cross-validation, the model must be
developed from scratch for each leave-one-out
training set. This means that feature selection
must be repeated for each leave-one-out
training set.

e The cross-validated estimate of misclassification
error Iis an estimate of the prediction error for
model fit using specified algorithm to full dataset
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Prediction on Simulated Null Data

Generation of Gene Expression Profiles

» 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* P; ~ MVN(0, Igy90)

 Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction

» Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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Proportion of simulated data sets
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Prediction Error Estimation: A Comparison of
Resampling Methods

Annette M. Molinaro*"; Richard Simon*, Ruth M. Pfeiffer®
*Biostatistics Branch, Divisian dcarmrﬁumdmy ang Ganetics, NCI, NiH,

Rockville, MD 20852, "

of Epidemiology and Public Health, Yale

Schoal of Medicing, New Haven, CT 06520, “Biometric Research Branch,
Diviston of Cancer Trealment and Diagnastics, NCI, NiH, Rockville, MO 20852

ABSTRACT

In sludies, of fealires are
collectad on relatively few samples. One of the goals of
theze studies is to bulld classfiers to predict the outcome of
future observations. There ere three inherent steps to this
process: feeture selection, modsl selection, and prediction
agsessment. With & focus on prediction aggessment, we com-
pare several methods for estimating the frue’ prediction error
of a pradicticn modal in the presence of feature selaction.
Besults: For small studies where features are selected from
thousands of candidates, the resubstitution and simpla split-
sample estimates are seriously biased. In these small samp-
les, leave-ona-out (LOOICY), 10-fokd cross-validation (CV),
and the 632+ bootsirap have the smallest bias for diago-
nal discriminant analysis, nearast neighbor, and dassification
traas, LOOCY and 10:fold CV have the smallast bias for linear
discriminant analysis. Addiionally, LOGCV, 5- and 10-fald GV,
and tha B32+ bootstrap have tha kowes! maan square arror.
Tha B32+ hootstrap is quite biasad in small sampla sizes
‘with strang signsl 1o noise rafios, Differences in perfon

In many stdies ebservations are known o belong o pre-
determined classes and the task i to buld predictoss of
chissifiers for new observations whose cluss is unknown.
Deciding which genes or protecimic measuremennts to include
in the prediction is called fewture selecpion and s a e
<ial step in developing a class predictor, Including oo many
noisy variahles reduces accuracy of the prediction and may
lead to over-fitting of data, resulting in promising bt often
‘mon-reproducible results {RanssholT. 2004).

Another difficulty is model selection with numerous clas-
sification models available. An important step in reporting
Tesults is assessing the chosen model’s crmor rale, or pene-
ralizahility. In the absence of independent validation data, a
comimon approach o estimanng predictive accuracy 15 based
o gome Torm of resampling the onginal data, o, eross-
walidation. These techmigues divide the data into o leaming
set and atest set and runge m complexity from the popular
leurnimg-test split to a-fold cross-valdaton, Momte-Carle v-
fuld msmmummm resampling. Few compa-

ameng resampling methods are reduced as the number of
specimens avallable increase.

Avnilability: A complate compilation of resulls in tables and
figures |s svailable in Molinaro of ol (2005). R code for
lions and anatyses is les from the authors,

Contaci: annette. molinarofiyele.edu

1 INTRODUCTION

In genomic expenments one frequently encounters hugh
dimensional data and small sample sizes, Microarrays sinul-
tanecusly monitor expression levels Tor several thousands
of genes. Proteomic profiling stidies wsing SELD-TOF
(surface-enlanced laser desorption and ionizmion wme-of
flight| messure size and charge of peoteins and protein frag-
ments by mass spectroscopy, and resull in up o 15,000
imtensity levels at prespecified mass values for each spectrunm,
Sample sizes in such experiments are typieally less than [,

“ler sl comrespondaios ol be sliessal

Tisong of ik ling mathids have been performed
o date, and all ol’ them exhibit limitstions that make their
conclusions inapplicable to most genomie settings, Early
comparizons of resampling techniques in the Hlerarure are
focussed on model selection as opposed 1o prediction erros
estimation (Breiman and Spector, 19492; Bu'rmn 1989, In
wo recent af 1 ling for error
estimation (Braga-Neto and Dougherty, 2004, Efron, 2004),
feature selection was ned included as part of the resampling
procedures, canging the conclugions 10 be inapproprise for
the high-dimensional setting.

We have perfermed an extensive comparison of resamp-
ling methods to estimate prediction error using simulated
{large signal 1o nodse miio), microaray {intermediste sigral
1o noise ratiol and proteomic data (low signal to noise mtio k.
encompassing increasing sample siees with large mumbers
of features. The impact of feature selection on the perfor-
mance of varous mssmndmmnwm 15 hlghhgjuei
The results elucidate the hest”

7 Csrioed Linivarsiy Press 7005
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Comparison of Internal Validation Methods
Molinaro, Pfiffer & Simon

e For small sample sizes, LOOCYV is much less
biased than split-sample validation

 For small sample sizes, LOOCV is preferable to
10-fold, 5-fold cross-validation or repeated k-fold
versions

 For moderate sample sizes, 10-fold is preferable
to LOOCV

e Some claims for bootstrap resampling for
estimating prediction error are not valid for p>>n
problems
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Do’s & Don'ts
Supervised Prediction

* Do frame a therapeutically relevant
guestion and select a homogeneous set of
patients

 Don’t violate the fundamental principle of
classifier validation, i.e. no preliminary use
of the test samples
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Do’s & Don'’ts
Separate Test Set

 Don’t use any information from the test set
In developing the classifier

e Do access the test set once and only for
testing the fully specified classifier
developed with the training data
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Do’'s & Don’'ts
Cross Validation

e Don’t use the same set of features for all
iterations

Do report error estimates for all classification
methods tried, not just the one with the smallest
error estimate

« Don't consider that retaining a small separate
test set adds value to a correctly cross-validated
estimate of accuracy

« Do report the fully specified classifier with its
parameters
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Myth

For analyzing right censored data to
develop predictive classifiers it is
necessary to make the data binary
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Fitting by gene expression only
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Does an Expression Profile Classifier
Predict More Accurately Than Standard
Prognostic Variables?

* Not an issue of which variables are
significant after adjusting for which others
or which are independent predictors

— Predictive accuracy and inference are
different
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Major Flaws Found in 40 Studies
Published in 2004

 Misleading use of cluster analysis

— 13/28 studies invalidly claimed that expression clusters based on
differentially expressed genes could help distinguish clinical
outcomes

» 50% of studies contained one or more major flaws
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Cluster Analysis of Samples

* For discovering unanticipated structure
and subsets of tissues
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Cluster Analysis Is Subjective

e Cluster algorithms always produce
clusters

 Different clustering algorithms may find
different structure using the same data.
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Class Comparison and Class
Prediction

e Not clustering problems

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Don’t control multiplicity or for distinguishing
data used for classifier development from
data used for classifier evaluation

o Supervised methods
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Do’'s & Don’'ts
Cluster Analysis

e Don’t use “supervised” cluster analysis
based on genes selected as differentially
expressed among classes
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BRB-ArrayTools

» Architect — R Simon
* Developer — Emmes Corporation

« Contains wide range of analysis tools selected by R
Simon

» Designed for use by biomedical scientists

* Imports data from all gene expression and copy-number
platforms

— Automated import of data from NCBI Gene Express Omnibus
* Highly computationally efficient
« Extensive annotations for identified genes

» Integrated analysis of expression data, copy number
data, pathway data and data other biological data 62
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Classifiers

— Diagonal linear discriminant —
Compound covariate —
Bayesian compound covariate

Support vector machine with inner -
product kernel —

K-nearest neighbor -
Nearest centroid —

Shrunken centroid (PAM)

Predictive Classifiers In
BRB-ArrayTools

Random forrest —

Tree of
classes

binary classifiers for k- -

Survival risk-group —

— Supervised pc’s
— With clinical covariates

— Cross-validated K-M curves

Predict quantitative trait
LARS, LASSO

Feature selection options

Univariate t/F statistic

Hierarchical random variance
model

Restricted by fold effect
Univariate classification power
Recursive feature elimination
Top-scoring pairs

Validation methods

Split-sample
LOOCV

Repeated k-fold CV
.632+ bootstrap

Permutational statistical
significance

63
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BRB-ArrayTools

July 2008

8934 Registered users

68 Countries

616 Citations

19,628 hits/month to website

Registered users

— 4655 in US

« 898 at NIH
— 387 at NCl
e 2994 US EDU
* 1161 US Gov (non NIH)

— 4655 Non US
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Countries With Most BRB ArrayTools
Registered Users
 Germany 292 o Australia 155
 France 289 e India 139
 Canada 287 e Belgium 103
e UK 278 « New Zeland 63
o Italy 250 e Brazil 54
e China 241 e Singapore 53
* Netherlands 240 « Denmark 52
e Taiwan 222 e« Sweden 50
 Korea 192 » Israel 45
e Japan 187
e Spain 168
65
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