

Hypothesis Testing 1

National Cancer Center, Japan

Biostatistics Division

Aya Kuchiba

Hypothesis Testing

- Hypothesis Testing 1: Fundamentals
 - Theory, interpretation, and limitations
- Hypothesis Testing 2: Specific methods
 - Introduction of *t*-test, X² test, etc.

When Is A Test Used?

• Comparison of mean quality of life (QOL) scores

-		Group A	Group B	Group C	P value	-
-	QOL Score	19.4	12.6	16.7	0.0015	-
-a	mily histo	ory			Dabakuyo et al.	- (2009) 20, 1352-1361 Ann Oncol
-	Family history	Case Grou	up Cont	rol group	P value	-
-	Yes	120 peop	ple 15	56 people		-
	No	268 peop	ple 23	32 people	0.201	

Ma et al. (2009) 61(4), 447-456 Nutr Cancer

• Comparison of survival curves and so on

•

Today's Aim:

To be able to interpret results of hypothesis testing

Today's Lecture

- Hypothesis Testing
 - Null hypothesis
 - Alternative hypothesis
 - *P*-value
- Errors Associated with Hypothesis Testing
 - α error
 - β error
 - Statistical power
- Sample Size Design
- Limitations of Hypothesis Testing

JCOG0301 Study

- Participants: 71 years and up with unresectable stage III non-small cell lung cancer
- Research question: Can radiation + chemotherapy (CRT) reduce mortality than radiation alone (RT)?

Evaluation of Research Questions

- Research Question: "Can RCT reduce mortality more than RT?"
- Comparison of survival curves between the two groups
- Evaluate whether "there is a difference between the survival curves."

Two-Group Comparison: Hypothesis Testing

- I want to examine whether there is a "difference between RT and CRT."
- This method makes the opposite assumption that "there is no difference between RT and CRT," and draws conclusions by evaluating the extent to which the data contradict the assumption.
 - Drawing conclusions by *reductio ad absurdum*

Two-Group Comparison: Hypothesis Testing

- 1. Setting the null hypothesis
 - "There is no difference between RT and CRT."
- 2. Distribution under the null hypothesis
 - Distribution of results obtained when the same test is repeated many times under the hypothesis that "there is no difference between RT and CRT."
- 3. Calculation of the p-value
 - Determine the probability that the difference becomes greater than or equal to the observed difference between RT and CRT.
- 4. Decision based on the p-value
 - If the P-value is small, the hypothesis "there is no difference between RT and CRT" is wrong and judge that "there is a difference between RT and CRT."
 - The hypothesis, "there is a difference between RT and CRT," is called the "alternative hypothesis."

1. Setting the Null Hypothesis

• "There is no difference between RT and CRT."

2. Distribution under the Null Hypothesis

• If a test is repeated 1,000 times with 200 participants...

3. Calculating the p-value

- Comparison of distributions and observed data under the null hypothesis
- Probability of the difference being greater than the observed difference between RT and CRT
- p-value = 35/1,000 = 0.035
 If [no difference] is true, the result is likely to occur about 35 times out of 1,000 times.

3. Note on Calculating the p-value: One-Sided and Two-Sided p-values

• One-sided p-value = 35/1,000 = 0.035 Alternative hypothesis "RT < CRT"

3. Calculating the p-value: Interpretation

- The p-value is the probability of observing a result more extreme than the data under the null hypothesis "no difference between RT and CRT"
- Large p-value

... The obvious happened.

... The null hypothesis was probably correct.

• Small p-value

...Something rare happened.

...Perhaps the assumption of the null hypothesis was wrong.

4. Decisions Based on the p-value

- p-value = 35/1,000 = 0.035
 - If [no difference] is true, a rare result was observed.
 - Perhaps the assumption that [there is no difference] is wrong.
- If the result is considered sufficiently rare, reject the null hypothesis [no difference] and adopt the alternative hypothesis [there is a difference]
- Significance level: Criteria for whether the results are sufficiently rare or not.
 - Decide and specify in advance to avoid retrofitting.

Results of JCOG0301

Two-Group Comparison: Hypothesis Testing

- Setting the null hypothesis "There is no difference between RT and CRT."
- Distribution under the null hypothesis Distribution of results obtained when the same test is repeated many times under the hypothesis that "there is no difference between RT and CRT."
- Calculation of the p-value Determine the probability that the difference becomes greater than or equal to the observed difference between RT and CRT
- Decision based on the p-value
 If the P-value is small, the hypothesis "there is no difference between RT and CRT" is
 wrong and judge that "there is a difference between RT and CRT."
 The hypothesis, "there is a difference between RT and CRT," is called the "alternative
 hypothesis."

Today's Lecture

- Hypothesis Testing
 - Null hypothesis
 - Alternative hypothesis
 - *P*-value

• Errors Associated with Hypothesis Testing

- α error
- β error
- Statistical power
- Sample Size Design
- Limitations of Hypothesis Testing

α Error

- Error in judging that [there is a difference] when [there is really no difference].
- False positive
- Also known as a Type I error

β Error

- Incorrectly concluding [no difference] when [there is a difference].
- False negative
- Also known as a Type II error
- Power = 1β Probability of determining [there is a difference] when [there is a difference]

Summary of Decisions Based on Hypothesis Testing

		True		
		Null hypothesis is true (No difference)	Null hypothesis is false (There is a difference)	
	Accept the null hypothesis	Correct	Wrong <mark>β error</mark>	
Decision	Reject the null hypothesis	Wrong <mark>α error</mark>	Correct	

• Test results are not always correct.

Relationship Between α and β Errors

- Want to reduce α error
- Always accept the null hypothesis

V

- α error = 0%
- β error = 100%

• Want to reduce β error

7

• Always reject the null hypothesis

• α error = 100%

• β error = 0%

The two types of errors cannot be minimized simultaneously.

Today's Lecture

- Hypothesis Testing
 - Null hypothesis
 - Alternative hypothesis
 - *P*-value
- Errors Associated with Hypothesis Testing
 - α error
 - β error
 - Statistical power
- Sample Size Design
- Limitations of Hypothesis Testing

Sample Size Design

- How many participants are needed to make a reliable judgement on a research question?
 - No answer to the research question can be obtained if the sample size is too small (small power)
 - Costly and unethical if too large

Three Pieces of Information Needed for Sample Size Design

- Size of treatment effect: Δ (delta)
 - Difference in minimum clinically meaningful treatment effect required for a new treatment to replace the standard of care
- Significance level: α
 - Allowable α error
- Power: 1β
 - Probability of judging a truly effective treatment to be correctly effective

Sample Size Design for JCOG0301

- Magnitude of treatment effect:
 - Median survival time in RT group, 10 months
 - Median survival time in CRT group, 15 months
 - Treatment effect size $\Delta = 5$ months
- Significance level = 5%
- Power = 80%
- Sample Size = 200

Sample Size Design for Single Group and Response Rate (JCOG1002)

- Effect size:
 - Threshold response rate = 65%
 - Expected response rate = 80%
- Significance level = 10%
- Power = 80%
- Sample size = 50

Katayama et al. (2012) Jpn J Clin Oncol 42(6): 556-9.

Sample Size Design Tool SWOG Statistical Center: Statools

http://www.swogstat.org/stat/public/

One Sample Binomial

Select Calculation and Test Type

Sample Size	• 1 Sided
© Power	© 2 Sided

Select Hypothesis Test Parameters

Null Proportion	Alternative Proportion	Alpha
0.65	0.80	1

Calculate Power/Sample Size

Power	Sample Size		
		Approx Lower Count Critical Value -1	Aprox Upper Count Critical Value 30
0.80	40		

Setting of α , $1 - \beta$

- Significance level α : Usually 5 10%
 - (From the perspective of protecting a participant) minimize the error judging the ineffective treatment as good if at all possible
- Power 1β : Usually 80 90%
 - (Primarily from the perspective of the trial conductor) so that effective treatment can be said to have the right effect
- From the perspective of participant protection
 - Reducing α should be a priority
 - Decide the number of participants required to achieve a power of 80% or more with a small $\pmb{\alpha}$

Today's Lecture

- Hypothesis Testing
 - Null hypothesis
 - Alternative hypothesis
 - *P*-value
- Errors Associated with Hypothesis Testing
 - α error
 - β error
 - Statistical power
- Sample Size Design
- Limitations of Hypothesis Testing

Limitations: p-value Does Not Depict the Size of the Effect

- Studies with smaller p values do not imply greater treatment effects
- The size of the treatment effect needs to be "presumed"

3

6

Months after randomization

q

1.0 0.9

0.8

0.7

0.6

0.5 0.4

0.3

0.2

0.1

0.0

0

Proportion

Estimation of Effects

Multiplicity of Tests

- Repeated tests increase the probability that at least one of the null hypotheses will be falsely rejected.
 - Across the studies, many treatments are erroneously assumed to be effective.
- I want to compare three treatment methods, A, B, and C
- A vs. B, A vs. C, B vs. C (5% significance level) three times.
- Probability of finding a group difference somewhere by chance > 5%
- Multiplicity adjustment: Controlling α error for the entire test by reducing the α error allowed for individual tests
 - For example, Bonferroni's method: Significance level for each test = 0.05/(number of testing)
 - Even if we obtain a P value of 0.03 for a group comparison, 0.03 > 0.05/3 = 0.017, as we test 3 times
 - No significant difference

Today's Summary: Interpret Test Results Correctly

